Q 06

In the given circuit, it is observed that the current I is independent of the value of the resistance R_6 . (2001)Then the resistance values must satisfy

- J

(A) $R_1 R_2 R_5 = R_3 R_4 R_6$

(B)
$$\frac{1}{R_5} + \frac{1}{R_6} = \frac{1}{R_1 + R_2} + \frac{1}{R_3 + R_4}$$

(C) $R_1 R_4 = R_2 R_3$

$$(e)$$
 $R_1 R_4 = R_2 R_3$

(D) $R_1R_3 = R_2R_4$

Effective resistance of the circuit depends on R_6 Wheatstone bridge formed by R_1 , R_2 Wheatstone bridge formed by R_1, R_2, R_3, R_4 and takes belonced. Thus, the current becomes his balanced. Thus, the current becomes independent when the bridge is balanced. R_6 only when the bridge is balanced i.e., $R_1/R_2 = R_6$ is might be tedious but usually of R_6 . It might be tedious but worth to find the cur-Re I_1^{4} terms of R_1 , R_2 , R_3 , R_4 , R_5 and R_6 and explicated the independence of I in the independence of Irem I in the independence of I in the balanced condi-Hint: Use Kirchhoff's law in the three loops and salve for I. Ans. C 🖸